Geometry B Live Lesson Class

U1L2 - Review of the Tools of Geometry

Middle School Math Department

1. Review topics from Unit

1, Lessons 2.
2. Use the 2-column note system to take better notes in math class.
Bring your math notebook and pen or pencil to each math LiveLesson class.

2-Column Notes Template

1. Announcements/To Do's
2. School-Wide Learner Outcomes
3. LL Objectives
4. Vocabulary words
5. Problems
6. Summary (End of class)
7. Write down important details.
8. What are you going to work on this week?
9. Definitions (fill in as we go)
10. Steps to solving problems
11. 1 or 2 sentences about the

LL class.

Reminders and To - Do's

Information

1. Complete 1 math lesson per day.
2. Check your WebMail every day
3. Be prepared to spend 4-6 hours per day on schoolwork.
4. Remind your Learning Coach to take daily attendance

What to do

1. Go to your Planner in Connexus to find the math lesson for the day
2. Go to Connexus to find WebMail
3. Complete lessons for the day from your Planner. Do not get behind on lessons.
4. Have your Learning Coach log into Connexus daily.

Reminders and To - Do's

Information

5. Go to the Message Board first for information about our math class.
6. Contact Mr. Elizondo for math questions.

Remember: You need at least 2 phone calls with Mr. Elizondo per semester.

What to do

6. Call (559) 549-3244 and leave a voicemail if call is not answered.

Make an appointment at: https://elizondo.youcanbook.me

Send a WebMail

California Common Core State Standards

- HSG-CO.A.1: Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
- HSG-CO.C.9: Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
- HSG-CO.D.12: Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
- HSG-GPE.B.4: Use coordinates to prove simple geometric theorems algebraically.
- HSG-GPE.B.7: Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.
- HSN-Q.A.1: Use units as a way to understand problems and to guide the solution of multistep problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

U1L2 - Objectives

- Make nets and drawings of three-dimensional figures.
- Understand basic terms and postulates of geometry.
- Find and compare lengths of segments
- Find and compare the measures of angles
- Identify special angle pairs and use their relationships to find angle measures.
- Make basic constructions using a straightedge and a compass
- Find the midpoint of a segment.
- Find the distance between two points in the coordinate plane
- Find the perimeter or circumference of basic shapes
- Find the area of basic shapes

A net is a twodimensional figure (2-D) that can be folded to form a three-dimensional (3-D) figure

U1L2 - Isometric drawing

An isometric drawing shows a corner view.

U1L2 - Orthographic drawing

An orthographic drawing shows three separate views: a top view, a front view and a right side view.

front
right-side

U1L2 - Undefined Terms

$\left.\begin{array}{|l|l|l|}\hline \text { Term } & \text { Naming } & \text { Diagram } \\ \hline \begin{array}{l}\text { A point indicates a location } \\ \text { and has no size. }\end{array} & \mathrm{M} \\ \mathrm{Point} \mathrm{M}\end{array}\right]$

U1L2 - Points on a plane

Collinear points are points that lie on the same line.

Points and lines that lie in the same plane are coplanar.

Space is the set of all points in three dimensions.

U1L2 - Defined Terms

$\left.\begin{array}{|l|l|l|}\hline \text { Term } & \text { Naming } & \text { Diagram } \\ \hline \begin{array}{l}\text { A segment is a part of a line } \\ \text { that consists of two endpoints } \\ \text { and all points between them. }\end{array} & A B & B A \\ \text { Segment AB }\end{array}\right)$

U1L2 - Postulate, axiom

A postulate or axiom is an accepted statement of fact.

These are the building blocks of logic and reasoning in geometry

U1L2 - Two Points through a straight line

Postulate 1-1

Through any two points there is exactly one line.
Line t passes through points A and B. Line t is the only

line that passes through both points.

U1L2 - Intersecting Lines

Postulate 1-2

If two distinct lines intersect, then they intersect in exactly one point. $\overleftrightarrow{A E}$ and $\overleftrightarrow{D B}$ intersect in point C.

U1L2 - Intersecting Planes

Postulate 1-3

If two distinct planes intersect, then they intersect in exactly one line.

Plane RST and plane WST intersect in $\overleftrightarrow{S T}$.

U1L2 - Key Words - Segments

- The midpoint of a segment is a point that divides the segment into two congruent segments.
- A point, line, ray, or other segment that intersects a segment at its midpoint is said to bisect the segment. That point, line, ray, or segment is called a
 segment bisector.

U1L2 - Ruler Postulate

Postulate 1-5 Ruler Postulate

Every point on a line can be paired with a real number. This makes a one-to-one correspondence between the points on the line and the real numbers. The real number that corresponds to a point is called the coordinate of the point.

U1L2 - Key Words - Segments

- The distance between points A and B is the absolute value of the difference of their coordinates.
- Distances cannot be negative

U1L2 - Segment Addition Postulate

Postulate 1-6 Segment Addition Postulate

If three points A, B, and C are collinear and B is between A and C, then $A B+B C=A C$.

U1L2 - Segments

- Congruent segments are segments that have the same length.

U1L2 - Key Words - Angles

note

Key Concept Angle

Definition

An angle is formed by two rays with the same endpoint.

The rays are the sides of the angle. The endpoint is the vertex of the angle.

How to Name It
You can name an angle by

- its vertex, $\angle A$
- a point on each ray and the vertex, $\angle B A C$ or $\angle C A B$
- a number, $\angle 1$

Diagram

The sides of the angle are $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
The vertex is A.

U1L2 - Key Words - Angles

ve note

Key Concept Types of Angles

obtuse angle
straight angle

U1L2 - Protractor Postulate

Postulate 1-7 Protractor Postulate

Consider $\overrightarrow{O B}$ and a point A on one side of $\overrightarrow{O B}$. Every ray of the form $\overrightarrow{O A}$ can be paired one to one with a real number from 0 to 180 .

U1L2 - Angle Addition Postulate

Postulate 1-8 Angle Addition Postulate
If point B is in the interior of $\angle A O C$, then $m \angle A O B+m \angle B O C=m \angle A O C$.

U1L2 - Types of Angle Pairs

Key Concept Types of Angle Pairs

Definition

Adjacent angles are two coplanar angles with a common side, a common vertex, and no common interior points.

Vertical angles are two angles whose sides are opposite rays.

Complementary angles are two angles whose measures have a sum of 90 . Each angle is called the complement of the other.

Supplementary angles are two angles whose measures have a sum of 180. Each angle is called the supplement of the other.

Example

$\angle 1$ and $\angle 2, \angle 3$ and $\angle 4$

$\angle 1$ and $\angle 2, \angle 3$ and $\angle 4$

$\angle 1$ and $\angle 2, \angle A$ and $\angle B$

$\angle 3$ and $\angle 4, \angle B$ and $\angle C$

U1L2 - Angle Bisector

- An angle bisector is a ray that divides an angle into two congruent angles.

U1L2 - Linear Pair Postulate

- A linear pair is a pair of adjacent angles whose noncommon sides are opposite
 rays.

```
ke note
```


Postulate 1-9 Linear Pair Postulate

If two angles form a linear pair, then they are supplementary.

- Supplementary vs. linear pair?

U1L2 - Reading Diagrams

- Things you can conclude from unmarked diagrams
- Angles are adjacent
- Angles are adjacent and supplementary
- Angles are vertical angles
- Things you cannot conclude from unmarked diagrams
- Angles or segments are congruent
- An angle is a right angle
- Angles are complementary

U1L2 - Key Words - Constructions

A straightedge is a ruler with no markings on it.

A compass is a geometric tool used to draw circles and parts of circles called arcs.

A construction is a geometric figure drawn using a straightedge and a compass.

U1L2 - Key Words - Perpendicular Lines

- Perpendicular lines are two lines that intersect to form right angles

- A perpendicular bisector of a segment is a line, segment, or ray that is perpendicular to the segment at its midpoint.

U1L2 - Key Words - Coordinate Plane

- A coordinate of a point is the real number that corresponds to the point.
- A coordinate plane is formed by a horizontal number line (the x-axis) and a vertical number line (the y-axis).

U1L2 - Midpoint Formulas

- On a number line

- In a coordinate plane

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

U1L2 - Distance Formula

Key Concept Distance Formula

The distance between two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

U1L2 - Partitions

- A line segment can be partitioned into smaller segments which are compared as ratios.
- Find a point E such that the ratio of CE to $C D$ is $4 / 5$.

U1L2 - Key Words - Polygon

- The perimeter (P) of a polygon is the sum of the lengths of its sides.
- The area (A) of a polygon is the number of square units it encloses.

U1L2 - Key Words - Circle

- The formulas for a circle involve the special number π (pi)
- By definition π is equal to the circumference/diameter.
- To approximate π, we use 3.14 or 22/7.
- The circumference of a circle is the perimeter of the circle.

U1L2 - Formulas

Key Concept Perimeter, Circumference, and Area

Square

side length s

$$
\begin{aligned}
& P=4 s \\
& A=s^{2}
\end{aligned}
$$

Rectangle

base b and height h

$$
\begin{aligned}
P & =2 b+2 h, \text { or } \\
& 2(b+h) \\
A & =b h
\end{aligned}
$$

Triangle

side lengths a, b, and c, base b, and height h

$$
\begin{aligned}
& P=a+b+c \\
& A=\frac{1}{2} b h
\end{aligned}
$$

Circle
radius r and diameter d

$$
\begin{aligned}
& C=\pi d, \text { or } C=2 \pi r \\
& A=\pi r^{2}
\end{aligned}
$$

U1L2 - Area Addition Postulate

, note

Postulate 1-10 Area Addition Postulate

The area of a region is the sum of the areas of its nonoverlapping parts.

Questions?

- Check the Message Board first
- Send a WebMail
- You can also make an appointment at https://elizondo.youcanbook.me
- You can also call me at (559) 549-3244. If I'm not available to answer your call, please leave a voicemail with your full name and phone number.

